
Finding and Optimizing Phases
in Parallel Programs

Ray Chen <rchen@cs.umd.edu>

Jeffrey K. Hollingsworth <hollings@cs.umd.edu>

Scalable Tools Workshop 2016



Motivation

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 2

• HPC programs often contain “phases”

– Dynamic execution context (like a stack trace for performance)

– Each have distinct performance traits

• Particularly disruptive if inside a timestep loop

– Short phases confound tools

– Difficult to analyze a rapidly changing landscape

– Worse if phases are nested



LULESH2 MPI Call Trace

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 3

while (locDom->time() < locDom->stoptime())
{

TimeIncrement(*locDom);
LagrangeLeapFrog(*locDom);

} 



Automatic Phase Identification

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 4

• Prior art (chosen completely at random)

– IPS-2

– Paradyn’s Performance Consultant

• Key: Automatic identification is hard

– Rely on experts for annotations



while (locDom->time() < locDom->stoptime())
{

TimeIncrement(*locDom);

LagrangeLeapFrog(*locDom);

} 

while (locDom->time() < locDom->stoptime())
{

cali::Annotation region1(“tuner.communication”).begin();
TimeIncrement(*locDom);
region1.end();

cali::Annotation region2(“tuner.computation”).begin();
LagrangeLeapFrog(*locDom);
region2.end()

}

Guided Phase Identification

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 5



Performance Landscape

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 6

Actual
Timeline

Contextual
Timeline

Contextual
Timeline

2.5KB
Per Iteration

3,700KB
Per Iteration



Cross-Domain Analysis

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 7

• Utilize experts during development

– Library writers specify tuning variables

– Application writers specify code regions

– Phase dictates different performance context

• Even though the same function is being called

My application 
has three phases

I know what 
variables affect 

MPI 
performance

I know what 
variables affect 

BLAS 
performance

I know what 
variables affect 

FFTW 
performance



Integration Work

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 8

• Special annotation types identify:

– Tunable variables

– Code regions that should enable tuning

• New Caliper tuning service

– Listens for and reacts to special annotations

– Calls Active Harmony to perform search



3D Fast Fourier Transform

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 9

• FFT in 3 dimensions

– Composed of three 1 dimensional FFT’s

– Data is redistributed among processes between FFT’s

FFTz FFTy FFTxA2A1 A2A2

0 2

1 3

0

2

1

30

1 3

2

(blocking) (blocking)



Computation/Communication Overlap

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 10

0

1 3

0 2

1 3

0

2

1

32 0

1 3

2

FFTz FFTy1 FFTxA2A1
(non-blocking)

A2A2
(non-blocking)

FFTy2

FFTz FFTy FFTxA2A1
(blocking)

A2A2
(blocking)

0 2

1 3

0

2

1

30

1 3

2



Auto-tuning Opportunities

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 11

T1

0 2

1 3

FFTz & Pack

0

1 3

2

Unpack & FFTy1

Px1

Py1

x

y T1

Ny / p2
Ux1

Uz1

x

z T1

Nz / p2
T1

T1
T2

0

1 3

0 2

1 3

0

2

1

32 0

1 3

2

FFTz FFTy1 FFTxA2A1 A2A2
(non-blocking) (non-blocking)

FFTy2



Nested Phases

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 12

• Block size during A2A transfer is tunable

– Relatively independent from other variables

– May be tuned as a nested sub-phase

• Outer and inner phases run in tandum



Online Auto-Tuning

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 13



Offline Auto-Tuning Cost

14



Online vs. Offline Tuning

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 15

• Improvements over offline tuning

– Nested phases simplifies search complexity

– Reduce search dimensions from 24 to 16

– 40% fewer search steps needed to converge

– Equivalent performance after convergence

• Eliminates need for training runs

– Don’t allocate thousands of nodes to train



Conclusion

8/2/16 Finding and Optimizing Phases in Parallel Programs: Scalable Tools Workshop 16

• Phases are key for HPC analysis tools

– Rely on human guidance through annotations

• Annotations unite cross-domain expertise

– Libraries annotate variables to analyze

– Application annotate regions to analyze

• Currently analyzing other HPC codes

– HPGMG has natural phases to exploit

– AMR codes are next in line


